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Week 5

0.0.1 Storage of double type variables

double type variables are stored using 8 bytes using the scheme:

1 sign bit,

11 bits for a biased exponent (actual exponent+1023)

52 bits for the mantissa-1.

double type variables will suffer fewer and smaller round off errors than float

type variables.

Example 0.1

224 + 1 will store exactly as a double but 253 + 1 will not.

0.0.2 Effects of Rounding Error

0.0.2.1 Program logic should not depend on exactitude!. Computations are

frequently inexact because of rounding error and a programmer must beware

of relying on mathematical exactness in the logic of her or his programming.

For example the following loop will not work because of rounding error:

float x =1;
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do
{
x=x-0.2;
cout<<x<<endl;
}while(x !=0);

0.0.2.2 Accumulation of errors. If we try to give a float type variable the

value 0.2 we see that what is really stored is 0.2 + 0.2(
1

226
). This relatively

small error can be greatly magnified by subsequent calculations.

float x =0.2;
cout.precision(20);
cout<<x*pow(2.0,26)<<endl; //correct answer is 2^27/10
cout<<pow(2.0,27)<<endl;// difference of 0.2 - the rounding error magnified.

Because rounding error can be magnified by subsequent calculations, it follows

that the more arithmetic operations are carried out the more likely there is to

be an accumulation of errors.

Many small steps can be worse than few bigger ones.

The following program contains a loop which should cause the variable sum

to have the value 100. The loop is executed using steps of size
1

n
and n is

successively given the values 3,4,5,....100.

Because of round-off error the value of sum is rarely exactly 100 and the error

varies in size. Some of the biggest errors occur as the number of terms increase

#include <iostream>
#include <cmath>
#include <iomanip>

using namespace std;
void main()
{

float sum =0;
for(int n=3;n<=100;n++)
{

sum=0;
for(int i = 1;i<=n*100;i++)
{

sum += 1.0/n; //Ideally this should add up to 100 in steps of 1/n

}
cout.precision(20);
cout<<<<n<<"\t"<<fabs(100-sum)<<endl;

}
}
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The lesson illustrated by this example is that one should use machine numbers

as much as possible and, if you must use non-machine numbers, then the more

steps there are in a calculation the more likely it is that errors will accumulate.

Example 0.2

If we use a program to calculate a Riemann sum then there is a trade off be-

tween the mathematical theory and the problem of round off error.

If f is a function integrable over the interval [a, b] a Riemann Sum is determined

by first deciding on a partition of the interval. Very often we choose an equal

subdivision of the interval into n sub-intervals of equal size. If we decide on n

equal sized sub-intervals then each sub-interval will have length h =
b − a

n
.

We thus get a Riemann sum:

f(a)h + f(a + h)h + f(a + 2h)h + . . . f(a + (n − 1)h)h

which is an estimate for

∫
b

a

f(x)dx

The following illustrates a Riemann sum consisting of 4 sub-intervals which

underestimates an integral:

a b
q

x5

q

x1

x2 x3 x4

The Riemann Sum here is

f(x1)h + f(x2)h + f(x3)h + f(x4)h

=(f(x1) + f(x2) + f(x3) + f(x4))h

=

4∑
i=1

f(xi)h

where h =
b − a

4
.

We can prove that the finer the partition (the smaller h is here) then the closer
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the Riemann Sum will be to the exact value of the interval. However, if we

make h too small in a computer program then there is a danger that we cause

greater rounding error in the adding up process.


